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By introducing a predictive mechanism with small-world connections, we propose a new motion protocol
for self-driven flocks. The small-world connections are implemented by randomly adding long-range interac-
tions from the leader to a few distant agents, namely, pseudoleaders. The leader can directly affect the
pseudoleaders, thereby influencing all the other agents through them efficiently. Moreover, these pseudoleaders
are able to predict the leader’s motion several steps ahead and use this information in decision making towards
coherent flocking with more stable formation. It is shown that drastic improvement can be achieved in terms of
both the consensus performance and the communication cost. From the engineering point of view, the current
protocol allows for a significant improvement in the cohesion and rigidity of the formation at a fairly low cost
of adding a few long-range links embedded with predictive capabilities. Significantly, this work uncovers an
important feature of flocks that predictive capability and long-range links can compensate for the insufficiency
of each other. These conclusions are valid for both the attractive and repulsive swarm model and the Vicsek
model.
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I. INTRODUCTION

Over the last decade, physicists have been looking for
common, possibly universal, features of the collective behav-
iors of animals, bacteria, cells, molecular motors, as well as
driven granular objects. The collective motion of a group of
autonomous agents �or particles� is currently a subject of
intensive research that has potential applications in biology,
physics, and engineering. One of the most remarkable char-
acteristics of systems, such as flocks of birds, schools of fish,
and swarms of locusts, is the emergence of collective states
in which the agents move in the same direction, i.e., an or-
dered state �1–7�. Moreover, this ordered state seeking prob-
lem for flocks, swarms, and schools can be further general-
ized to consensus �8�, rendezvous, synchrony, cooperation,
and so on. From the application aspect, this kind of distrib-
uted collective dynamic system has direct implications on
sensor network data fusion, load balancing, unmanned air
vehicles �UAVs�, attitude alignment of satellite clusters, con-
gestion control of communication networks, multiagent for-
mation control, and global coordination for emergencies
�9–12�.

The interaction pattern of the natural biological flocks or
swarms are neither entirely regular nor entirely random. An
individual of a flock usually knows its neighbors, but its
circle of interactions may not be confined to those nearby. In
1998, in order to describe the transition from a regular lattice
to a random graph, Watts and Strogatz �WS� introduced the
concept of the small-world network �13� by rewiring one end

of a few connections to new nodes chosen at random from
the whole network. With these few shortcuts, the average
distance is decreased significantly without crucially changing
the clustering property. The work on the WS small-world
network has started an avalanche of research on complex
networks. Especially, the synchronizability of networks can
be greatly enhanced by introducing a few long-range connec-
tions �14–16�. Thus, for better synchronization in a flock of
neighboring-connected agents with a leader, it is advanta-
geous to build a small-world-type network structure by ran-
domly adding long-range connections from the leader to a
few distant agents �namely, pseudoleaders�, so that the leader
can affect them, thereby influencing all the other agents
through them, via fast communication and rapid control
commands.

Although a lot of relevant works were focused on network
structures, recently, more and more researchers are interested
in finding the rules of the interconnections present in abun-
dant biogroups. Extraction of these rules can help interpret
why the biogroups can demonstrate so many good character-
istics such as synchronization, stabilization, and cohesion,
amongst others. A fairly basic but popular flocking strategy
is the Reynolds model �17�, in which three elementary flock-
ing protocols are prescribed: �i� separation: steer to avoid
crowding and collision; �ii� alignment: steer towards the av-
erage heading; and �iii� cohesion: steer to move towards the
average position. These rules have been proven effective and
thus become the basic rules for the design of biogroup dy-
namic models. In 2003, Gazi and Passino �18� proposed an
effective A/R �attractive or repulsive� swarm model in which
the motion of each individual �autonomous agent or biologi-
cal creature� is determined by two factors: �i� attraction to the*Corresponding author: michael.chen@cantab.net
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other individuals on long distances; and �ii� repulsion from
the other individuals on short distances.

The Gazi and Passino A/R model �18�, embedded with a
similar mechanism of the intermolecular force, is derived
from the biological flocks or swarms behaviors. Thus far, the
general understanding is that the swarming behaviors result
from an interplay between a long-range attraction and a
short-range repulsion between the individuals �19,20�. In �9�,
Breder suggested a simple model composed of a constant
attraction term and a repulsion term, which is inversely pro-
portional to the square of the distance between two members,
whereas in �20�, Warburton and Lazarus studied the effects
on cohesion of a family of attraction or repulsion functions.
Moreover, in the physics community, a large volume of lit-
erature on systems with interactive particles has adopted
functions of attractive and repulsive forces to investigate the
dynamics of the system �21–27�. For instance, in �21,22�,
systems of particles interacting in a lattice are considered
with attraction between particles located at different sites and
repulsion between particles occupying the same site. It is
discussed in �23� that, the structure of a nonuniform
Lennard-Jones �LJ� liquid near a hard wall is approximated
by a reference fluid with repulsive intermolecular forces in a
self-consistently determined external mean field incorporat-
ing the effects of attractive forces.

With the A/R model �18�, Gazi and Passino proved that
the individuals will form a bounded cohesive swarm in a
finite time. One year later, by adding another factor, i.e.,
attraction to the more favorable regions �or repulsion from
the unfavorable regions�, they generalized their former
model into a social foraging swarm model �28�. Under suit-
able circumstances, agents in this modified model are apt to
move to the more favorable regions. The A/R model has
been adopted by physicists and biologists to model self-
driven particles and biological flocks �4,29–34�. In 2004,
Moreau �34� presented a linearized model of flocks, and
proved that the flock is uniformly and globally cohesive to a
bounded circle if and only if there exists an agent �the
“leader�� connecting to all other agents, directly or indirectly,
over an arbitrary time interval. Other than these kinds of A/R
models �18,28,34�, another popular kind of model is that
without leaders �i.e., homogeneous�, where a very represen-
tative one is the Vicsek model �3�. In each step, every agent
updates its velocity according to the average direction of its
neighbors. With the decrease of external noise or the increase
of the particle density, the collective behavior of the flock
undergoes a phase transition from a disordered phase to an
ordered phase with coherent movement directions. In 2003,
Jadbabaie et al. �35� provided the convergence condition of
the noise-free Vicsek model, i.e., there exists an infinite se-
quence of contiguous, nonempty, and bounded time intervals
�ti , ti+1�, starting at t0=0, with the property that across each
such interval, all the agents are connected together.

Although most of the previous works on flock dynamics
yield many advantages such as synchronization, stabiliza-
tion, cohesion, and quick consensus, agents within the net-
works only know the information currently available to
them. In this paper, we highlight another appealing phenom-
enon, i.e., the universal existence of a predictive mechanism
in various biological aggregated systems. A general physical

picture behind this is illustrated in Fig. 1 and interpreted as
follows: in widely spread natural biogroups such as animals,
bacteria, or cells, the decision on the next-step behavior of
each individual is not solely based on the currently available
state information �including position, velocity, etc.� of other
�neighboring� agents inside the group but also on the predic-
tions of future states. More precisely, taking a few past states
of its leader and neighbors into account, an individual can
estimate the corresponding future states several steps ahead
and then make a decision.

Some experimental evidence has already been reported in
the literature. In 1959, Woods �36� implemented some ex-
periments on bee swarms and found a certain predictive
mechanism of electronic signals inside this biogroup. Also
for bee swarms, in 2002, Montague et al. �37� discovered
that there exist some predictive protocols in the foraging
process in uncertain environments. Apart from the investiga-
tion on the predictive mechanisms of swarming and foraging,
other scholars focused on the predictive function of the op-
tical and acoustical apparatuses of the individuals inside bio-
groups �38–40�, especially cortexes and retinae. For in-
stance, based on experiments on the bioeyesight systems, it
was found that, when an individual observer prepared to fol-
low a displacement of the stimulus with the eyes, visual form
adaptation was transferred from current fixation to the future
gaze position. These investigations strongly support our con-
jecture of the existence of some predictive mechanisms in-
side abundant biogroups.

Bearing in mind the plentiful examples of predictive pro-
tocols inside natural biogroups, we incorporated some pre-
dictive functions into a few long-range links, and found that
it is possible to significantly enhance the flocking perfor-
mances at a fairly low cost of the additional predictive en-
ergy. Furthermore, proper prediction capability can help re-
duce the minimal number of the long-range links between
the leader and pseudoleaders, thus effectively decreasing the
communication cost.

On the other hand, from the engineering application point
of view, the phenomena and strategy reported in this paper
may be applicable in relevant areas such as autonomous ro-

FIG. 1. �Color online� Predictive vision in natural biogroups.
Each individual makes its motion decision based on not only the
current status of the leader and its neighbors but also their future
dynamics.
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bot formations, sensor networks, and UAVs �9,10,12�. Typi-
cally, due to the limitation of the communication energy,
only a few agents have the capability to communicate with
the leader. The incorporation of a predictive mechanism into
these pseudoleaders can greatly improve the flocking perfor-
mances.

The rest of the paper is organized as follows. In Sec. II,
the small-world connection model with an embedded predic-
tive mechanism is presented. Then, in Sec. III, its important
role in improving flocking synchronization performances is
extracted and analyzed by numerical simulations on the A/R
model �18�. Afterwards, in Sec. IV, the generality of the vir-
tues endowed by such a predictive mechanism is validated
on the Vicsek model �3� as well. Finally, conclusions are
drawn in Sec. V.

II. MODEL

It is well known that a ring-shaped network structure is
not a good one for efficient mutual communication and glo-
bal control within a flock of agents, while the so-called
small-world networking structure performs much better. By
adding a few long-range connections, the average path length
of the ring-shaped network is abruptly decreased. This small-
world effect is very desirable for fast communication and
information transmission, efficient synchronization, and ef-
fective global control over the entire network �15�. Thus, in a
flock of neighboring-connected agents with a leader, for
communication and control purposes, it is advantageous to
build a small-world-type network by randomly adding long-
range connections from the leader to a few distant agents
�namely, pseudoleaders�. As shown in Fig. 2, the leader can
affect pseudoleaders, thereby influencing all the other agents
through them. To be clear, we call the nonspecial agents
followers. Thus in our model, there are three different kinds
of agents: leader �L�, pseudoleaders �P�, and followers �F�.

In this model, the flock is assumed to move in an
m-dimensional space and the standard A/R function �8,18,28�

G�dpL� = − dpL�a − b exp�− �dpL�2
2/c�� �1�

is used as long-range interaction from the leader �L� to each
pseudoleader �P�, where a, b, c are three free parameters, dpL
is the m-dimensional vector pointing from the predicted lo-
cation of leader L to the current location of a pseudoleader p,
and �dpL�2=�dpL

T dpL denotes the Euclidean distance between
them. The force G�dpL� is an m-dimensional vector whose
direction is from the pseudoleader to the leader. For simplic-
ity, in our model, the motion of the leader is given in ad-
vance, and will not be affected by any other agents. We as-
sume that every pseudoleader has the same prediction
horizon Hp, that is to say, a pseudoleader will predict the
leader’s location Hp steps ahead.

On the other hand, a weaker A/R function, representing
the short-range interaction between two arbitrary neighbor-
ing agents i and j, is given as

g�dij� = − dij�ã − b̃ exp�− �dij�2
2/c̃�� , �2�

where dij is the m-dimensional vector pointing from the in-
dividuals j to i, and �dij�2=�dij

Tdij denotes the Euclidean dis-

tance between them. The parameters ã, b̃, and c̃ are much
smaller than a, b, and c, respectively. The direction of vector
g�dij� is from i to j. Denote by r the radius of the neighbor-
ing area �see Fig. 2�. The neighboring A/R links could con-
nect any two agents �F-F, P-P, and L-F� within the Euclid-
ean distance r except the L-P interaction described in Eq.
�1�. Note that the leader can influence other agents, but will
not be influenced. In order to decrease the prediction cost, no
predictive mechanism is incorporated into the neighboring
A/R links. Bearing in mind the physical meaning of the A/R
function �8�, the positions of a pseudoleader zp and a fol-

FIG. 3. �Color online� Information communication process in-
side flocks with a predictive mechanism. The arrows represent the
passing of position information. If the pseudoleader i predicts the
dynamics of the leader Hp steps ahead, then the follower j, within
topological distance equaling Hp from i, could be affected by the
current location of the leader. Here, an agent j has topological dis-
tance zero to itself, and 1 to all the agents located inside the circle
with radius r centered on j. Two agents having topological distance
1 are called connected. An agent has topological distance DT to j if
and only if it is connected to at least one agent with distance DT

−1 to j, and not connected with any agents having a distance
smaller than DT−1 to j. Note that all the agents are not necessarily
embedded in a circular pathway. Instead, due to the circle-shaped
neighborhood of each agent, the position information transmission
pathway forms a tube tangent to these neighboring circles, and the
layout boundary of the pathway could be any type of curves de-
pending on the location of the agents.

FIG. 2. �Color online� Small-world predictive mechanism of
flocks. The leader �L�, pseudoleaders �P�, and followers �F� are
denoted by stars, triangles, and circles, respectively, and the neigh-
boring area of each individual is a circle with radius r centering at
itself. The leader’s trajectory is given in advance, which will not be
influenced by the others. Each pseudoleader’s dynamics is always
influenced by both the leader’s future position Hp steps ahead and
its neighbors’ positions, while each follower’s dynamics is solely
affected by its neighbors’ positions.
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lower zi �both zp and zi are m-dimensional vectors� are de-
termined by

żp�t� = G�dpL�t + Hp��

long link to the leader

+ �
j�L,dpj�t��r

g�dpj�t�� ,

neighboring links �3�

and

żi�t� = �
j,dij�t��r

g�dij�t�� ,

neighboring links �4�

respectively, where t denotes the current time, and dpL�t
+Hp� represents the m-dimensional vector pointing from the
leader’s position Hp steps ahead to the current position of a
pseudoleader. Although the rest of this paper concentrates on
the motions in a two-dimensional space, the present model
can be directly applied in any finite dimensional space. In
this way, unlike the routine flocking strategies �18,28,34,41�,
a small-world interaction pattern is established with an em-
bedded predictive mechanism, which has the capability of
predicting the future behavior �position, velocity, etc.� of the
leader several steps ahead. Note that �i� the structure of this
interaction network will change in time since the location of
each agent is varying; and �ii� in our simulations, the time
label t is a discrete number with time step �or sampling in-
terval� Ts=1, i.e., ẋ�t�= �x�t+Ts�−x�t�� /Ts=x�t+1�−x�t�.

The information communication process is illustrated in
Fig. 3. The farthest agent i1 directly communicating with
agent i is among the ones at the rim of the circle with radius
r centered on agent i. Analogously, the farthest agent i2 di-

rectly influenced by i1 is also located at the rim of the circle
centered on agent i1, and so forth. Finally, the influence of
agent i reaches agent j in Hp steps. When agent j receives the
information from agent i at time t, it is in fact a delayed
information of agent i at time step t−Hp. However, if agent i
acts as a pseudoleader who can accurately predict the behav-
ior of the leader Hp steps ahead �i.e., the future dynamics at
t+Hp�, then, at time step t agent j’s motion is affected by the
exact current location of the leader zL�t� �i.e., the current
dynamics at t+Hp−Hp= t�. In this way, although agent j may
not have a direct connection with the leader, it could know
some information of the leader’s current dynamics by agent
i’s delayed information. Therefore, agent j can adhere to the
leader more tightly, making the flock’s formation more likely
to be rigid, and the coherence of the whole flock is thus
improved effectively. Note that the predictive mechanism is
valid only if the leader’s motion is regular �42�. If the leader
moves in some random, chaotic, or other irregular ways
�e.g., a random walk�, it is, in principle, impossible for the
pseudoleaders to predict the leader’s future location. Fortu-
nately, in the real biological world, the flock leader always
moves in some predictable pattern. Therefore, the other
agents have the opportunity to display their predicting abil-
ity, such as that used by a chameleon to capture a fly or by a
dog to catch a frisbee.

III. SIMULATION AND ANALYSIS

To show the advantages of the predictive mechanism, we
compare the performances of the two cases of flocking with
and without the predictive mechanism by simulations over
an N-agent flock moving in a two-dimensional space. The
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FIG. 4. �Color online� �a�
Starting position of the 50-agent
flock consisting of 1 leader, 2
pseudoleaders, and 47 followers.
The blue line marked by square
points denotes the trajectory of the
leader. �b� Flock position after 65
steps without predictive mecha-
nism �Hp=0�, �c� with proper pre-
dictive mechanism �Hp=20�, and
�d� with overprediction �Hp=70�.
Here, x1 and x2 denote the two-
dimensional position coordinates.
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parameters are set as follows: the neighboring circle
r=0.65, and the parameters of the A/R functions �see Eqs.
�1� and �2�� of long-range links and neighboring links are set

as a=8, b=17.6, c=3.2, and ã=1, b̃=2.2, c̃=0.2, respec-
tively. The former A/R function is much stronger in order to
intensify the influence of the leader. As shown in Fig. 4�a�,
each agent starts from a position randomly selected in the
square �0,1�� �0,1�. The leader and pseudoleaders are se-
lected randomly among these N agents. The trajectory of the
leader is set as x2=�x1, and the velocity of the leader is
vLx1

�t�=0.02, vLx2
�t�=�0.02�t+1�−�0.02t.

It can be seen from Figs. 4�b�–4�d� that, with a proper Hp,
the coherence of the flock can be improved remarkably. The
followers adhere to the leader much more tightly �see Fig.
4�c��, and the flock formation is more stable. More precisely,
for the flocks with the predictive mechanism, the position
error index

Jp =
1

N − 1 �
i=1,i�L

N

�diL�2 �5�

converges to a constant after finite steps, indicating a stable
state of the flock dynamics. Here, Jp measures the cohesion
performance of the flock, with �diL�2 denoting the Euclidean
distance between agent i �F or P� and the leader. Meanwhile,
as to the flock without this mechanism, as shown in Fig.
4�b�, Jp will keep increasing along with the elapse of time,
making the flock unstable. However, abusing the foresight,
namely, overprediction �see Fig. 4�d��, is also undesirable.
That is because the pseudoleaders are attracted or repelled by
the leader position too many steps ahead and will probably
escape the flock with a fairly high speed, and then lose in-
fluence on the followers. In this way, the flocking will be
damaged after finite steps.
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FIG. 5. �Color online� The
roles of the pseudoleaders’ num-
ber Npl ��a� and �c�� and predic-
tion horizon Hp ��b� and �d�� on a
flock of 50 agents. The leader and
the pseudoleaders are selected
randomly among these agents.
Each point is an average over
1000 independent runs. The pa-
rameters of the A/R functions �1�
and �2� are a=8, b=17.6, c=0.4,

and ã=1, b̃=2.2, c̃=0.2, respec-
tively. The radius of the influence
circle is r=0.65. Each agent starts
from a position randomly selected
in the square �0,1�� �0,1�. With-
out loss of generality, the trajec-
tory of the leader is set along the
curve defined by x2=�x1,
and the velocity of the
leader is vLx1

�t�=0.02, vLx2
�t�

=�0.02�t+1�−�0.02t.
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conditions are the same as those in Fig. 5. Each point is an average over 1000 independent runs. The moderate external noise does not change
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The circular formation of the followers in Figs. 4�b�–4�d�
should be ascribed to the particular form of the A/R function.
The biological flocking mechanisms are fairly complex,
which can yield different kinds of collective behaviors. For
example, fish use sidetrack to sense the current variances in
which way the fish schools are formed. On the other hand, in
order to save flying energy for the ones at the rear, wild
geese flocks always form a “�”-like formation �43�. In this
case, the forming process of such a flock is determined by
aerodynamics. Our proposed model is based on the idea that
an individual inside a biogroup can predict the trajectory of
its leader�s�, and this kind of intelligence can help the indi-
vidual make a more efficient decision to improve the flock-
ing performance. This paper, however, does not aim at repro-
ducing the detailed movement formations of any particular
biogroups.

In order to extract the role of Hp and the number of
pseudoleaders denoted by Npl, we display their influences on
the position error index Jp and the velocity error index Jv in
Fig. 5, where

Jv =
1

N − 1 �
i=1,i�L

N

�vi
� − vL

� �2. �6�

Here, Jv measures the formation performance of the flock,

where vL
� and vi

� denote the velocity vectors of the leader and
the ith agent �F or P�. If Jv→0, the relative velocity of each
pair of agents approaches zero, and thus the flock formation
is fixed. In Fig. 5�a�, we fix Hp and display the curves of Jv
with increasing Npl, while Fig. 5�b�, on the contrary, reports
the curves of Jv with increasing Hp and fixed Npl. It can be
seen from Fig. 5�a� that the curves fall quickly at the begin-
ning and then more slowly until reaching a minimum, after-
wards rising slowly with the increase of Npl. It implies that
adding just a proper number of pseudoleaders �e.g., long-
range links� to the leader, which transforms the flock topol-
ogy from a strongly localized network into a small-world
one, will improve the flocking performance greatly. How-
ever, when the number of pseudoleaders reaches an optimum
N

pl
* corresponding to the minimal J

v
*, the flock formation

performance will start to worsen and these extra pseudolead-
ers become redundant. On the other hand, increasing Hp can
help depress Jv with the same Npl. Analogously, the Jv curves
in Fig. 5�b� fall at the beginning until reaching the minimum,
afterwards increasing all along and never reaching a stable
platform. It implies that the flock formation performance can
be remarkably improved with proper predictive capability.
However, too much vision into the future, namely, overpre-
diction, will even worsen the formation of flocking, which is
consistent with what we have observed in Fig. 4�d�. Besides,
more pseudoleaders, i.e., larger Npl �as long as Npl�N

pl
* �,

can also help yield more cohesive flocking with better for-
mation.

An interesting phenomenon can be observed from Fig.
5�a� that increasing pseudoleaders beyond some characteris-
tic number makes the flocking performance worse, which
seems counterintuitive. This can be explained as follows. If
all the followers act as pseudoleaders, then they will align
not to the current but to the future direction of the leader Hp

steps ahead, which generally cannot yield optimal Jv. On the
other hand, if Npl is moderately decreased, then the increased
followers lag behind the pseudoleaders and hence become
more likely to align to the leader’s current velocity via the
tubelike information transmission as shown in Fig. 3. There-
fore, the observation in Fig. 5�a� is reasonable. We give fur-
ther discussions in Appendix A for interested readers.

Next, we investigate the effects of Hp and Npl for another
important index Jp. It can be seen from Fig. 5�c� that the
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denote the leader, pseudoleaders, and followers, respectively. The
centered black circle outlines the trajectory of the leader. In this
case, the prediction horizon is Hp=4, and Npl /N=20%. �b� Velocity
synchronization index Jv as a function of the parameters Hp and
Npl. �c� The roles of Npl /N on Jv. The parameters of this simulation
are L=15, �=0.1, v=0.15, N=300, r=1, and R=L /6. The simula-
tion result is averaged over 1500 independent runs.
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curves fall sharply at the beginning and then asymptotically
approach a stable value. The main difference between Figs.
5�a� and 5�c� is that the latter is monotonous and has no
minimum, in other words, the increase of Npl always im-
proves Jp. A special case explaining this phenomenon is that,
if all the followers serve as the pseudoleaders, then they will
be very cohesive to the leader. However, this improvement
on Jp also displays a saturation effect with increasing Npl. On
the other hand, compared with Fig. 5�c�, the curves of Fig.
5�d� decrease more slowly first and then reach the lowest
values at a fairly large Hp, and afterwards rise quickly. As a
consequence, overprediction is not preferred. In brief, suit-
able insight into the future and moderate number of
pseudoleaders are preferred.

A plausible physical rule behind the observed phenomena
shown in Fig. 5 is that, in order to achieve a fixed flocking
performance, greater predictive capability and more
pseudoleaders can compensate the insufficiency of each
other. Given a fixed-size flock, for formation performance Jv
or cohesive performance Jp, there exists an optimized com-
bination of Hp and Npl. It is worth mentioning that the con-
clusions achieved in this paper are not sensitive to the trajec-
tory of the leader. In order to validate the generality of the
conclusions, we have also examined another two different
trajectories, i.e., parabolic and sinusoidal curves. The simu-
lation results are shown in Appendix B, which suggest that
our main conclusion, i.e., predictive capability and long-
range links can compensate for the insufficiency of each
other, also holds in those two cases.

From a practical point of view, external perturbations
�noise� and internal modeling mismatch are always present
in any realistic system, which inevitably induces some pre-
diction error for the pseudoleaders. To examine the influence
of such prediction errors, we now introduce the perturbation
into Eqs. �1� and �2� by adding an external two-dimensional
white noise term �� �− 1

2� , 1
2��� �− 1

2� , 1 / 2�� to the vector

dpL, i.e., d̂pL=dpL+� and G�d̂pL�=−d̂pL�a−b exp�−�d̂pL�2
2 /c��.

The leader’s position is no longer perfectly known to the
pseudoleaders. From Fig. 6, one can observe that moderate
external noises do not change the principal behavior of the
flock, and hence the tendencies of the curves Jp and Jv are
almost the same as the noise-free case. Furthermore, to un-
derstand deeply the capacity and robustness of our proposed
predictive mechanism, we have also investigated the influ-
ences of stronger prediction errors � with other kinds of
leader trajectories including the parabolic and sinusoidal
curves in Appendix C. We found that the tolerance range of
prediction error is large enough. The generality of the con-
clusions on the role of the predictive mechanism is thus fur-
ther verified.

IV. PREDICTIVE MECHANISMS IN THE VICSEK MODEL

The role of predictive mechanisms highlighted in Sec. III
is not merely confined to A/R flocks but is quite general. To
verify this, we now incorporate this predictive mechanism
into another well-accepted flocking model, i.e., the Vicsek
model �3�, and compare the synchronization performance of
the predictive small-world Vicsek model with the one of the
standard Vicsek model.

In this model, the velocities vi of the N agents of the
group are determined simultaneously at each discrete-time
instant, and the position of the ith agent is updated as

xi�k + 1� = xi�k� + vi�k� , �7�

where vi�k� denotes the velocity vector of agent i at time k.
The velocity vi�k� is characterized by a constant magnitude v
and a direction �i�k� whose dynamics is given by

�i�k + 1� = ��i�k�	r + 	�i, �8�

where ��i�k�	r denotes the average direction of all the agents’
velocity vectors within a circle of radius r centered on agent
i, i.e.,

��i�k�	r = 
arctan��sin„�i�k�…	r/�cos„�i�k�…	r� if �cos„�i�k�…	r 
 0,

arctan��sin„�i�k�…	r/�cos„�i�k�…	r� + � otherwise,
� �9�

where �sin(�i�k�)	r and �cos(�i�k�)	r denote the average sine
and cosine values, and 	�i represents a random noise obey-
ing a uniform distribution in the interval �−� /2,� /2�.

As shown in Fig. 7�a� the particles are distributed in a
square of dimension �0,L�� �0,L�. The trajectory of the
leader, which is not affected by others, is a circle centered at
�L /2,L /2� with radius R=L /6 so that the direction of the
leader changes constantly. The small-world predictive con-
nection framework shown in Fig. 2 is used together with the
Vicsek model. Hence, the Npl pseudoleaders are always in-
fluenced by the leader’s velocity Hp steps ahead together
with its neighbors’ current velocities. It is shown in Figs.

7�b� and 7�c� that drastic improvement of the velocity syn-
chronization performance can be achieved with moderate
prediction horizons Hp and a suitable percentage of Npl /N.
Similar to the results of the A/R model shown in Sec. III, one
can also conclude that suitable insight into the future and
moderate number of pseudoleaders is preferable. Note that
the Vicsek model aims at analyzing the direction consensus
for self-driven particles �3�, and it is less beneficial to inves-
tigate whether or not a more cohesive flock is better than a
more evenly distributed one. Hence, we have solely focused
on the velocity synchronization index Jv.
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V. CONCLUSION AND DISCUSSION

Inspired by the predictive mechanisms that universally
exist in abundant natural biogroups, we incorporate a certain
predictive protocol into flocks with small-world structure.
The predictive mechanism embedded in the pseudoleaders
endows many neighboring-connected followers the capabil-
ity of timely perceiving the current or even future dynamics
of the leader, thus each individual can make a decision based
on timely information of the leader instead of the delayed
information as in some traditional models. In this way, the
followers become more cohesive to the leader and the flock
formation becomes more rigid. Note that, in our model, the
leader’s motion governs the trajectory of the whole swarm.
However, it is a general feature of real migration flocks. In
Ref. �41�, a changeable target known by a few leaders is used
to guide the whole flock, in which only the target’s motion
drives swarming behavior. Analogously, in this paper, a
single leader is used to determine the general trajectory of
the whole swarm. Therefore, the current leader-driven swarm
is not unrealistic.

Simulation results led to the following conclusions: �i�
Increasing the number of pseudoleaders can always improve
the cohesive flocking performance. Furthermore, it can im-
prove the formation flocking performance when the
pseudoleader number has not exceeded a threshold, other-
wise, the performance will be degraded. �ii� There exists a
certain value of Hp that optimizes the cohesive and the for-
mation flocking performances, in other words, moderately
increasing Hp will improve the flocking performance,
whereas overprediction will impair the flocking. �iii� Predic-
tive capability and long-range links can compensate for the
insufficiency of each other.

Furthermore, to verify the generality of these conclusions,
we have also applied the predictive mechanism to another
popular flock model, the directed graph model with linear
dynamics �44,45�. The corresponding results also strongly
suggest that predictive protocols are beneficial to flocking
dynamics when taking both the flocking performance and the
communication cost into consideration. More importantly,
with this mechanism, only a very small proportion of the
followers are required to act as the pseudoleaders to achieve
a better flocking performance, as measured by Jp and Jv.
From the engineering point of view, the value of this work is
twofold: �i� The flocking performance is significantly im-
proved by incorporation of a suitable predictive mechanism
into the pseudoleaders. �ii� Moderately increasing the predic-
tive capability can help remarkably decrease the required
number of pseudoleaders. The latter feature is fairly useful
for networks with insufficient long-range communication
links, which are routinely costly.

This work provides a starting point aimed at achieving
better flocking performance by using a predictive mecha-
nism, and we hope that it will open new avenues in this
fascinating direction.
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APPENDIX A: SUPPLEMENTAL ILLUSTRATION OF FIG.
5(a)

To support our explanation, we have implemented new
simulations on a small-scale flock with N=4,5, as shown in
Fig. 8. The leader’s trajectory is set as sinusoidal and circular
curves in Figs. 8�a� and 8�b�, respectively, so that the leader’s
direction changes continuously. It can be observed that, com-
pared with the all-pseudoleader case �i.e., all the individuals
act as pseudoleaders except the leader so that Npl=N−1 �see
the purple and red lines��, if only one pseudoleader is de-
graded into a follower �see the blue and black lines�, Jv will
be effectively decreased. Moreover, the improvement of Jv
yielded by the single follower �see the red circle in Fig. 8�d��
is amplified by increasing Hp. The disadvantage of the all-
pseudoleader case lies in the fact that all the N−1
pseudoleaders align to the leader’s direction Hp steps ahead
�see Fig. 8�c�� while, in the one-follower case, the single
follower lagging behind the pseudoleaders is more likely to
align to the current direction of the leader �see Fig. 8�d��,
which effectively improves Jv. The reasonableness of our
observation in Fig. 5�a� is thus verified.

APPENDIX B: EFFECTS OF THE PREDICTIVE
MECHANISM WITH DIFFERENT LEADER’S

TRAJECTORIES

The conclusions drawn in this paper are not sensitive to
the leader’s trajectory. In order to validate the generality of
the conclusions on the role of predictive mechanisms, we
have examined another two different trajectories, i.e., sinu-
soidal �x2=sin�2x1�+1� and parabolic �x2=x1

2� curves. As
shown in Figs. 9 and 10, regardless of the leader’s trajectory,
the influences of Hp and Npl on the principal tendencies of
both Jp and Jv remain the same. Those simulations suggest
that our main conclusion, i.e., predictive capability and long-
range links can compensate for the insufficiency of each
other, is also valid in these two cases.

One may notice the difference between the optimal values
of Npl /N corresponding to the minimal Jv in Figs. 5�a� �or
Fig. 10�a�� and 9�b�. This should be due to the different kinds
of leader trajectories. More precisely, the direction of the
leader’s sinusoidal trajectory �Fig. 9�a�� changes more inten-
sively than that of Figs. 5�a� �square root curve� and 10�a�
�parabolic curve�, and hence a small proportion of
pseudoleaders �such as 20% in Figs. 5�a� and 10�a�� cannot
contain sufficient information to effectively guide the whole
group. Therefore, more pseudoleaders �e.g., about 70% in
Fig. 9�a�� are required to minimize Jv, and the optimal value
of Npl /N is remarkably higher in Fig. 9�a� than in Figs. 5�a�
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and 10�a�. Generally speaking, no matter what the leader’s
trajectory is, more pseudoleaders are not necessarily benefi-
cial to Jv. It is worth mentioning that, as shown in Figs. 9�b�
and 9�d�, the oscillations of Jv and Jp along with increasing
Hp are due to periodical changing of the position �in the x2
dimension� and direction of the leader. In detail, although the
followers may lag behind the current motion of the leader, Jv
or Jp can also be improved if the followers happen to ap-
proach the leader’s position �in the x2 dimension� or velocity
mT steps later. Here, T denotes the minimal period of the
leader’s trajectory, and m is an arbitrary positive integer.

APPENDIX C: EFFECTS OF PREDICTION ERRORS

In realistic system models, mismatch and external pertur-
bations, which cause prediction errors, are always present.
For completeness, we hereby examine the effects of the pre-
diction errors on synchronization behavior of the flock. As
shown in Fig. 11, we present curves of Jv and Jp with in-
creasing noise magnitude �=0,0.02,0.2,0.5 for the cases of
three different leader trajectories �square root, parabolic, and
sinusoidal curves�, respectively. It is observed that moderate
prediction error � �e.g., ��0.2� can hardly change the syn-
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FIG. 8. �Color online� �a�
Curve of Jv vs Hp with the lead-
er’s sinusoidal trajectory defined
by x2=sin�2x1�+1. �b� Curve of
Jv vs Hp with the leader’s circular
trajectory defined by �x1+1.26�2

+ �x2−0.74�2=4. In both �a� and
�b�, each point is an average over
1000 independent runs. �c� Four-
individual flock position and di-
rection in the all-pseudoleader
case. �d� Four-individual flock po-
sition and direction with only one
follower �the red circle�. Both �c�
and �d� are snapshots at the 170th
running step, with Hp=15 and the
leader’s circular trajectory given
in �b�.
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FIG. 9. �Color online� The
roles of the pseudoleaders’ number
Npl ��a� and �c�� and prediction ho-
rizon Hp ��b� and �d�� on a flock
with a total of N=50 agents. The
trajectory of the leader is set along
the sinusoidal curve defined by
x2=sin�2x1�+1, and the velocity
of the leader is vLx1

�t�=0.02,

vLx2
�t�=sin�0.04�t+1��−sin�0.04t�.

The other parameters and initial
conditions are the same as those in
Fig. 5.
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chronization tendency of the flock, which guarantees the fea-
sibility and superiority of the current predictive mechanism.
By comparison, too large � �e.g., �
0.5� will inevitably im-
pair the advantages of this predictive mechanism. This ob-

servation is reasonable since every method has its own limits
and one cannot expect a poor prediction capability to yield a
superb guidance for the flock. Fortunately, the tolerance
range of prediction error is satisfactorily large, which further
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FIG. 10. �Color online� The
roles of the pseudoleaders’ num-
ber Npl ��a� and �c�� and predic-
tion horizon Hp ��b� and �d�� on a
flock with a total of N=50 agents.
The trajectory of the leader is set
along the parabolic curve defined
by x2=x1

2, and the velocity of the
leader is vLx1

�t�=0.02, vLx2
�t�

= �0.02�t+1��2− �0.02t�2. The
other parameters and initial condi-
tions are the same as those
in Fig. 5.
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FIG. 11. �Color online� The ef-
fects of prediction error �. Here,
the trajectory of the leader is set
along the curve defined by x2

=�x1 ��a� and �b��, x2=sin�2x1�
+1 ��c� and �d�� and x2=x1

2 ��e�
and �f��, respectively. The flock
size is N=50, and the number of
pseudoleaders is Npl=9. The other
parameters and the initial condi-
tions are the same as those in Fig.
5. Each point is averaged over
1000 independent runs. It can be
found that moderate prediction er-
ror � does not change the principal
behavior of the flock. If �, how-
ever, reaches a very large value,
such as �=0.5, the benefits of pre-
diction capability on Jv will al-
most vanish. Note that the curve
of Jv is more sensitive than that of
Jp, making the feasible prediction
error range of Jv smaller than the
counterpart of Jp.
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verifies the generality of our proposed predictive mechanism.
Note that the curve of Jp is more robust than the curve of Jv

because the relative velocities are more easily deviated by
prediction error than the relative positions.
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